申博官网软件以强大为荣加入收藏
产品咨询QQ:1905068647
sunbet注册

大数据学习方向,从入门到精通

j很多初学者在萌生向大数据方向发展的想法之后,不免产生一些疑问,应该怎样入门?应该学习哪些技术?学习路线又是什么?

所有萌生入行的想法与想要学习Java的同学的初衷是一样的。岗位非常火,就业薪资比较高,,前景非常可观。基本都是这个原因而向往大数据,但是对大数据却不甚了解。

如果你想学习,那么首先你需要学会编程,其次你需要掌握数学,统计学的知识,最后融合应用,就可以想在数据方向发展,笼统来说,就是这样的。但是仅仅这样并没有什么帮助。

现在你需要问自己几个问题:

对于计算机/软件,你的兴趣是什么?

是计算机专业,对操作系统、硬件、网络、服务器感兴趣?

是软件专业,对软件开发、编程、写代码感兴趣?

还是数学、统计学专业,对数据和数字特别感兴趣。

你自己的专业又是什么?

如果你是金融专业,你可以学习,因为这结合起来你自己的专业,将让你在只有你专业知识的竞争者之中脱颖而出,毕竟现在AI+已经涉及到金融行业了。

说了这么多,无非就是想告诉你,大数据的三个大的发展方向:

平台搭建/优化/运维/监控;

大数据开发/ 设计/ 架构;

数据分析/挖掘。

请不要问我哪个容易,只能说能挣钱的都不简单。

说一下大数据的四个典型的特征:

数据量大;

数据类型繁多,(结构化、非结构化文本、日志、视频、图片、地理位置等);

商业价值高,但需要在海量数据之上,通过数据分析与机器学习快速的挖掘出来;

处理时效性高,海量数据的处理需求不再局限在离线计算当中。

现如今,为了应对大数据的这几个特点,开源的大数据框架越来越多,越来越强,先列举一些常见的:

文件存储: N、Mesos

日志收集:Flume、Scribe、Logstash、Kibana

消息系统:Kafka、StormMQ、ZeroMQ、RabbitMQ

查询分析:Hive、Impala、Pig、Presto、Phoenix、SparkSQL、Drill、Flink、Kylin、Druid

分布式协调服务:Zookeeper

集群管理与监控:Ambari、Ganglia、Nagios、Cloudera Manager

数据挖掘、机器学习:Mahout、Spark MLLib

数据同步:Sqoop

任务调度:Oozie

是不是眼花缭乱了,上面的这些内容,别谈精通了,就算全部都会使用的,应该也没几个。咱们接下来就大数据开发/ 设计/ 架构方向来了解一下学习路线。

在接下的学习中,不论遇到什么问题,先试试搜索并自己解决。Google首选,其次百度。

于入门者而言,官方文档永远是首选文档。

第一章:Hadoop

在大数据存储和计算中Hadoop可以算是开山鼻祖,现在大多开源的大数据框架都依赖Hadoop或者与它能很好的兼容。

关于Hadoop,你至少需要搞清楚这些是什么:

Hadoop 1.0、Hadoop 2.0

MapReduce、HDFS

NameNode、DataNode

JobTracker、TaskTracker

Yarn、ResourceManager、NodeManager

自己学会如何搭建Hadoop,先让它跑起来。建议先使用安装包命令行安装,不要使用管理工具安装。现在都用Hadoop 2.0。

HDFS目录操作命令;上传、下载文件命令;提交运行MapReduce示例程序;打开Hadoop WEB界面,查看Job运行状态,查看Job运行日志。知道Hadoop的系统日志在哪里。

以上完成之后,就应该去了解他们的原理了:

MapReduce:如何分而治之;HDFS:数据到底在哪里,究竟什么才是副本;

Yarn到底是什么,它能干什么;NameNode到底在干些什么;Resource Manager到底在干些什么;

如果有合适的学习网站,视频就去听课,如果没有或者比较喜欢书籍,也可以啃书。当然最好的方法是先去搜索出来这些是干什么的,大概有了概念之后,然后再去听视频。

之后便是自己寻找一个例子:

自己写一个(照抄也行)WordCount程序,

打包并提交到Hadoop运行。你不会Java?Shell、Python都可以,有个东西叫Hadoop Streaming。如果你认真完成了以上几步,恭喜你,你的一只脚已经进来了。

第二章:更高效的WordCount

在这里,一定要学习SQL,它会对你的工作有很大的帮助。

就像是你写(或者抄)的WordCount一共有几行代码?但是你用SQL就非常简单了,例如:

SELECT word,COUNT(1) FROM wordcount GROUP BY word;

这便是SQL的魅力,编程需要几十行,甚至上百行代码,而SQL一行搞定;使用SQL处理分析Hadoop上的数据,方便、高效、易上手、更是趋势。不论是离线计算还是实时计算,越来越多的大数据处理框架都在积极提供SQL接口。

另外就是SQL On Hadoop之Hive于大数据而言一定要学习的。

什么是Hive?

官方解释如下:The Apache Hive data warehouse software facilitates reading, writing, and managing large datasets residing in distributed storage and queried using SQL syntax。

为什么说Hive是数据仓库工具,而不是数据库工具呢?

相关文章推荐:

国内民企哀鸿遍野?专家:信心是个很大问题!

聚美影视发布“聚影IP计划” 聚美优品欲打造全娱乐平台

紧急通知!因系统升级 本周六洛阳车管所暂停办理业务

西安人吃的扇贝可能也是组装货 进价5毛卖15元

阅文首考:财报亮丽仍受争议 向IP泛娱乐开发平

增强用户娱乐体验释放平台价值 爱奇艺开放《三

17年后的回响:“911事件”的时空烙印

原“QQ炫舞”核心团队成员创办娱乐区块链平台


公司名称:申博软件有限公司
地址:成都市锦江区五治路
客服QQ:1905068647
蜀ICP备11012608号 版权所有!
申博官网提供软件客户端下载开户服务
二维码